Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo

نویسندگان

  • Angelika Böttger
  • Volker Böttger
  • Alison Sparks
  • Wei-Li Liu
  • Stephanie F. Howard
  • David P. Lane
چکیده

BACKGROUND The transcriptional activation function of the p53 tumour suppressor protein is induced by DNA damage and results in growth arrest and/or apoptotic responses. A key component of this response is the dramatic rise in p53 protein concentration resulting from an increase in the protein's stability. Very recently, it has been suggested that interaction with the Mdm2 protein may target p53 for rapid degradation. We have designed a gene encoding a small protein that binds tightly to the p53-binding pocket on the Mdm2 protein. We have constructed the gene by cloning a phage display optimised Mdm2-binding peptide into the active-site loop of thioredoxin. RESULTS When introduced into cells containing low levels of wild-type p53, this protein causes a striking accumulation of the endogenous p53 protein, activation of a p53-responsive reporter gene, and cell cycle arrest mimicking the effects seen in these cells after exposure to UV or ionising radiation. Microinjection of a monoclonal antibody to the p53-binding site on Mdm2 achieves a similar effect, establishing its specificity. CONCLUSIONS These results demonstrate that the p53 response is constitutively regulated in normal cells by Mdm2 and that disruption of the interaction alone is sufficient to stabilise the p53 protein and activate the p53 response. Our mini protein approach provides a powerful new method to activate p53 without causing DNA damage. More broadly, it establishes a powerful general method for determining the biological consequences of the specific disruption of protein-protein interactions in cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

MDM2 and promyelocytic leukemia antagonize each other through their direct interaction with p53.

p53 can be regulated through post-translational modifications and through interactions with positive and negative regulatory factors. MDM2 binding inhibits p53 and promotes its degradation by the proteasome, whereas promyelocytic leukemia (PML) activates p53 by recruiting it to multiprotein complexes termed PML-nuclear bodies. We reported previously an in vivo and in vitro interaction between P...

متن کامل

Transcription factor NFAT1 activates the mdm2 oncogene independent of p53.

Although the MDM2-p53 interaction has been well documented, MDM2 overexpression is observed in human cancers with little or no functional p53, suggesting that mdm2 expression is regulated by mechanisms independent of p53. Dysregulation of NFAT signaling is associated with malignant transformation and cancer development and progression. In this study, we demonstrate that the human mdm2 P2 promot...

متن کامل

Targeting the MDM2/MDM4 interaction interface as a promising approach for p53 reactivation therapy.

Restoration of wild-type p53 tumor suppressor function has emerged as an attractive anticancer strategy. Therapeutics targeting the two p53-negative regulators, MDM2 and MDM4, have been developed, but most agents selectively target the ability of only one of these molecules to interact with p53, leaving the other free to operate. Therefore, we developed a method that targets the activity of MDM...

متن کامل

القای آپوپتوز وابسته به p53 در رده‌ی سلولی لوسمی لنفوبلاستیک حاد پیش‌ساز لنفوسیت B (NALM-6) توسط مولکول کوچک RITA

Background and Objective: The use of low-molecular-weight, nonpeptidic molecules that degrade the interaction between the p53 protein and its negative regulator MDM2 (Murine- double minute colon 2) is a new therapeutic strategy for treatment of various types of cancer. One of these agents is RITA (reactivation of p53 and induction of tumor cell apoptosis) which binds to p53 protein and inhibits...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1997